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Abstract

A new technique and a physical model for writing ex-

tremely short length Bragg gratings in optical fibers have

been developed. The model describes the effects of diffrac-

tion on the spatial spectra and therefore, the wavelength

spectra of the Bragg gratings. Using an inte_erometric

technique and a variable aperture, short gratings of vari-

ous lengths and center wavelengths were written in optical

fibers. By selecting the related parameters, the Bragg grat-

ings with typical length of several hundred microns and

bandwidth of several nanometers can be obtained. These

short gratings can be apodized with selected diffraction

patterns and hence their broadband spectra have a well-

defined bell shape. They are suitable for use as miniatur-

ized distributed strain sensors, which have broad applica-

tions to aerospace research and industry as well.
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INTRODUCTION

Optical fiber Bragg gratings (FBG's) have a broad range of

application from wave filters, reflectors, and fiber amplifi-

ers for telecommunications to Bragg grating sensors, for

sensing. The application of FBG's to strain measurements

has been of great interest to industries. Fiber optic stain

sensors, compared to conventional strain gauges, have

similar sensitivities, but are much lighter weight and re-

quire simpler wiring. These advantages are especially im-

portant to aerospace applications. However, as strain sen-

sors encounter micro-strains where the strained area is

smaller than the dimensions of the sensors strain gauges

average over their finite area and are therefore insensitive

to the variation of micro-strains. In contrast, the spectra of

Bragg grating sensors are distorted by micro-strains, which

may complicate strain measurements. Bragg gratings with

shorter length certainly can avoid this problem. The very

short gratings also allow the sensors to be miniaturized.

The questions are then: How does the width of spectra

change with the length of gratings? Are the broadened

spectra resulting from the shorter length still suitable for
the strain measurements?

For some applications of FBG other than strain sensors,

fiber Bragg gratings with broader spectra are required, for

example, a broadband reflector with a typical bandwidth of

several nm. It is of interest to ask if short Bragg gratings

can be created to contain well-defined spectra with the

same order of bandwidth.

This paper presents a study of diffraction effects on both

the spatial and wavelength spectra of fiber Bragg gratings

and a new technique to fabricate extremely short Bragg

gratings in optical fibers with well-defined spectra for vari-

ous applications.

THEORIES

Inscription and Properties of Bragg Gratings

In general, as a photosensitive fiber is exposed to a pair of

interfering ultraviolet (UV) laser beams, a Bragg grating is

created along the fiber core. The resulting periodic changes

of refractive index along the fiber core sets the Bragg con-

dition for wave propagation in the fiber. This is equivalent

to a Bragg wavelength )_B. The length of interference pat-

tern created by the laser beams determines the length of

Bragg grating and thereby the line width centered at )_B. In

general, the spectrum of the reflected light from, or trans-

mitted through a Bragg grating is narrower as the length of

grating is longer, and vice versa. For example, the Bragg

gratings used for creating fiber lasers have a length, typi-

cally of tens of mm and those used for strain sensors are

least several mm long to maintain a line width of a couple

tenths of nm.

There are two major techniques used to write Bragg grat-

ings in optical fibers. The first uses of a phase mask, which

is a UV transparent plate with etched surface grooves, re-

sembling a grating of specific period [1]. As the UV laser

beam passes through the mask it is diffracted into various

orders. The pair of first-order diffracted beams, normally

containing most of the laser energy, forms an interference

pattern right behind the mask. An optical fiber is placed in

that area to get masked and thereby inscribed with the

Bragg grating. This technique is simple for a well-defined

Bragg wavelength. However, to write gratings of various

wavelengths requires various phase masks.

Another technique involves an optical system, splitting the

laser beam and steering the two split beams to interfere

with each other, as shown schematically in Figure 1. This

type of set-up is basically an interferometer [2, 3]. This

technique is therefore referred to as an interferometric

method. The angle between the two interfering beams, now



adjustable,determinestheperiodoftheinterferencefringes
andtherebythegrating,asthefiberisplacedin theinter-
ferenceregion.
ForaBragggratingwithalengthL, thebandwidthof its
reflectionspectrum,definedasthefullwidthbetweentwo
firstminimums,isgivenapproximatelyby[4]
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Figure 1. A schematic representing the interferometric
technique for generating fiber Bragg gratings. The

Bragg wavelength Z_ is determined by the adjustable
09.

if it is the case of far field effect_raunhofer diffraction, or

the near field one_resnel diffraction.

Fraunhofor Diffraction

Suppose an aperture is normally illuminated by a mono-

chromatic plane wave. Figure 2 describes the diffraction

geometry of an aperture. The diffracting aperture, A is as-

sumed to lie in the (_q) plane, and is illuminated in the

positive z direction, and (x, y) is the observation plane,

parallel to the (_q) plane and at normal distance z from it.

X

Figure 2. Diffraction geometry of an aperture.
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where neff is the effective refractive index of the fiber core,

and K, the coupling coefficient, is on the order of An/X, and

An is the amplitude of the periodic change of refractive

index along the fiber core.

For a finite length grating with a weak coupling coefficient,

i.e., KL << 1, Eq. (1) is reduced to

2
A2 = _. (2)

neffL

This expression states that the width of the wavelength

spectrum for a grating is inversely proportional to its spa-

tial length. However using a simple number L to describe

the spectrum is assuming the An is more or less uniform

along the length. In some cases a fine structure of the pro-

file of An needs to be considered.

Diffraction Effects on Bragg Gratings

In practice, an aperture or a slit is used to regulate the spot

size of the UV laser beam in order to get the desired grat-

ing length. However, as the opening of the aperture gets

smaller and smaller, diffraction effects become more sig-

nificant, the spot size of the UV beam, and thereby the

grating length are not simply proportional to the linear di-

mension of the aperture any more.

Not only the aperture size but also the distance of the aper-

ture to the object becomes critical for considering diffrac-

tion effects. To investigate the effects, one has to determine

Based on the Huygens-Fresnel principle, the diffraction can

be described by the Fresnel-Kirchhoff (F-K) diffraction

integral, [5]

U(x,y) =7£ U(_,r_ exp(jk_q) d_d/], (3)
r21

where r01 is the distance from P0 to Pl and given by

rOl = [z 2 +(x-- _)2 +(y_/])211/2 (4)

To reach this expression, there is an assumption that the

observation distance is much larger that the wavelength,

i.e., r01 >> )v. To reduce the F-K Integral to a simpler

expression, further approximations can be introduced. The

well-known Fraunhofer approximation assumes that

Z >> (_2 + /]2)max/2 (5)

is satisfied and retains only the first term of the binomial

expansion of r01, Eq. (4).

For the case of a single slit with a width of b, this condition

can be expressed as z >> b2/)v. The solution of the F-K in-

tegral, using Eq. (3), contains a sinc function and the inten-

sity of the diffraction pattern can be expressed as

l(x) = Iu(x)I 2 = lo(sinfl/fl) 2 , (6)

where [3 = 1/2 kbsin0, and k is the wavenumber. This is the

well-known Fraunhofer diffraction pattern.

The first minimun occurs for [3 = _, i.e., sin0 = X/b. If the

directional angle, 0 is assumed to be small, the width of the



centrallobeofthediffractionpatterncanthenbeexpressed
asAW= 2zsin0= 2zX/b.Thusit variesinverselywiththe
slit width.Fortheongoingandlaterdiscussion,it is
convenienttodefineafactor,

M F = AId//b = 2z2c/b 2 , (7)

which can be interpreted as a magnification. The

Fraunhofer approximation requires that My >> 1. Hence the

Fraunhofer diffraction pattern becomes much wider than

the size of the aperture. It seems ironic that if one pursues

using the aperture to reduce the spot size of the laser beam

the opposite occurs when Fraunhofer diffraction is in ef-

fect.

However the conditions required for Fraunhofer diffraction

are severe. In a practical situation, for example, at a wave-

length of 0.25 btm (an Excimer laser beam) and an aperture

width of b = 250 btm, and a point of observation at z =

250mm. The ratio of z/(bZ/X) = 1. At this distance, z is not

much greater than bZ/X. There is another alternative, less

stringent condition for a valid Fraunhofer approximation,

known as the "antenna designer's formula", which only

requires that z > 2DZ/X, where D is the linear dimension of

the aperture. However, for the near field diffraction pat-

terns, one should consider the more general Fresnel Dif-

fraction.

Fresnel Diffraction

The Fresnel approximation retains the first two terms of the

binomial expansion of r01, Eq. (4). Neglecting the higher

order terms, the condition requires that

3 7t" 2 2

Z >>-_[(X--_)2 + (F--/]) ] .... (g)

Actually the Fresnel approximation yields highly accurate

results even at distances that are very close to the aperture

[61.

Suppose a square aperture of width b is illuminated by a

monochromatic plane wave. The F-K diffraction integral
can be reduced as

ejkZ fbi2
U(x,Y)=7o b/2exp{j_[(x-©2+Oe-rl)2]}d_drl

(9)

This integral doesn't have a unique solution, however it

can be expressed as tabulated functions of Fresnel inte-

grals, which can be defined as

c(,) =  cos(v 2/2)a, (10)

and

S(s) = [/sin(a-t 2/2)dr. (1 1)
_O

For further simplicity, considering only a single slit of

width b, the intensity of the wave field is therefore given

by

1 _C (a2) - C (0[1) ]2 + [,,_'(a2) - S(0[1)]2 _. (12)I(_) =-_

where

Figure 3 shows a series of graphs representing the Fresnel

diffraction intensity distribution along the x-axis for vari-

ous slit widths, b at fixed distance, z, and fixed wavelength,

X. To simplify the description, it is convenient to define the

Fresnel number,

N_v = (b / 2).._.__2.2 ' (13)

and the normalized distance variable, u = x/@z) 1/2. It

should be noted that the comparison for fixed b and various
z is the same.

It is interesting to see that, as the Nv becomes large (large b

or small z) the diffraction pattern is shaped like a top hat,

approaching the shape of the aperture itself. As the Nv be-

comes small (small b or large z) the diffraction pattern be-

comes Fraunhofer-like, and the width of the diffraction

pattern is much wider than the actual aperture size.



0.4

0.3

0.2

0.1

0

-4

2

1.5

1

0.5

0

-3

I I I #P_ I I INF =0.1

m

#

-3 -2 -1 0 1 2 3

I I

,.u
-2 -1 0 1

]\\

I

N F = 1.0

_...._L__ _

2

1.5
I

1 _

0.5 -

0 _ _...i,,f

-6 -4

I

IF=IO

I I I I _4.-__

-2 0 2 4 6

u

Figure 3. Fresnel diffraction patterns from a single slit

of various widths at a fixed distance. Two gray lines in
the respective graphs indicate the actual aperture

APODIZATION

If an aperture is used for regulating the spot size of a laser

beam then the resulting diffraction pattern modulates the

interference pattern for writing gratings. In other words, a

diffraction pattern determines the physical shape (the spa-

tial spectrum) of a Bragg grating and hence its wavelength

spectrum.

For a long grating with the spatial spectrum resembling the

shape of a top hat, the wavelength spectrum typically re-

sembles a sinc function. The spatial length of the grating

only affects the width of its spectrum, i.e., its linewidth.

However as the grating becomes physically shorter, the

wavelength spectrum is more complicated. If a well-

defined spectrum is the goal for fabricating a Bragg grating

then special attention must be paid to shaping the pattern.

Apodization is a conventional technique for shaping the

spectrum of a grating. It is well known that the Fourier

transform of a top hat function is a sinc function. If the top

hat is replaced by a cosine function the resultant Fourier

transform is still like a sinc function but with the amplitude

of its side lobes substantially reduced [7]. Hence this effect

is called apodization. In practice, apodization could be ac-

complished, for example, by means of an amplitude-varied

mask placed over the aperture [8]. However this technique

is more suitable for writing longer, especially chirped grat-

ings with a typical length of several centimeters.

Alternatively for writing short gratings, one can use the

diffraction patters of a small N_ (as N_ = 0.1 in Figure 3)

with its sinc-like central lobe to shape the gratings. Thus

the resultant wavelength spectra are apodized. One can call

this self-apodization.

EXPERIMENTAL

A pulsed Excimer laser of 248 nm with maximum output of

450 mJ was used to write all the gratings discussed here.

Both standard telecommunication fiber and some boron-

germanium co-doped photosensitive fiber were used. Typi-

cal exposure was a 20 Hz pulse rate for a duration of less

than 5 minutes. For the standard telecommunication fiber

only very weak gratings with reflectivities, R, lower than

0.1% were obtained as expected. For the photosensitive

fiber, the short grating length kept the reflectivity low, typi-

cally less than 15%. In general very strong gratings with R

> 99% were avoided. For those high reflectivity gratings,

the spectrum would broaden and deviate from a sinc shape,

whose width would be otherwise inversely proportional to

the grating length.

For varying the wavelength of Bragg gratings, the interfer-

ometric technique of writing gratings was employed. A

phase mask was used as a beam splitter and a pair of mir-

rors was used to recombine the two split beams forming an

interference pattern. A single slit aperture was placed in

front of the phase mask to regulate the width of the incom-

ing laser beam. The width of the slit varied from several

millimeters to about 50 Ixm.

A Frequency domain demodulation system [9] was used to

read out the gratings. The detected signals were further

processed (FFT and inverse-FFT) to display both the spa-

tial and wavelength spectra of gratings.

RESULTS

Figure 4 shows a Bragg grating written in a standard fiber.

The slit width was 2 mm. The spatial spectrum of this grat-

ing, Figure 4(a), shows the typical features of a top hat. Its

wavelength spectrum, Figure 4(b), has the characteristic

shape of sinc function. Also shown in the figure is a com-

puted Fresnel diffraction pattern, using all the parameters

from actual grating writing (with N_ = 16.4). A slight off-

center observation position was introduced to simulate the

small misalignment in reality. This results in the asymmet-

ric form of the spectrum. This diffraction pattern is charac-

teristically similar to the spatial spectrum of the grating.
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Figure 4. (a) is the wavelength spectrum and (b) the
spatial spectrum of a written Bragg grating with a slit

width of 2 ram. Using the same parameters, a Fresnel
diffraction pattern is calculated and shown in (c).
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Figure 5. The spatial (a) and wavelength (b) spectra of
a Bragg grating written at a distance, z, of 0.2 m and a

slit width, b, of 700 p.m (with NF = 2.5).

As the previous discussion stated, simply reducing the ap-

erture size to write short gratings will encounter the com-

plication of the wavelength spectra. Figure 5 shows the

spatial and wavelength spectra of a Bragg grating, written

with a slit size, b, of 700 pm at a distance, z, of 0.2 m (with

Nv = 2.5). Apparently the wavelength spectrum, Figure

5(b) contains large side lobes.

The spectra of a series of short length gratings are shown in

Figure 6. These gratings were written at a fixed distance (z

= 0.246 pm) with aperture size, b, changing from 400 pm

down to 50 pm. Their equivalent Nv's and Mv's are given
in Table 1.

Table 1. The calculated Fresnel number, NF, and the

magnification number, MF, for a series of written
Bragg gratings as shown in Figure 6.

b
400 300 200 150 100 50

(pro)

Nv 0.66 0.37 0.16 0.09 0.04 0.01

MF 0.73 1.36 3.05 5.42 12.2 48.8

z = 0.246 m and X = 0.248 _tm

Spatial Spectra Wavelenath Spectra

b

400 pm

300 pm

200 pm

150 pm

100 pm

50 pm

1200 2400 1548 1552 1556 1560 1564

Distance (pm) Wavelength (nm)

Figure 6. A series of fiber Bragg gratings written at a
fixed distance, z, and various slit widths, b. Shown in

the left column are the spatial spectra and in the right
their respective wavelength spectra.

It is clear that at large Nv the wavelength spectrum of a

particular grating still has some side lobe because of its less



well-definedspatialspectrum.At smallerNv(forb less
than300_tm),thespatialspectrumof agratingbecomes
smootherandmorelike a sincfunction.Itswavelength
spectrumishenceapodized,withthesidelobeswellsup-
pressed.
ShowninFigure7arethespectraofanotherseriesofgrat-
ingswrittenataconstantaperturesize(b= 100_tm)with
variousdistancesz.TheirequivalentNv'sareintherange
of0.029to0.069.TherelativelysmallNvforeachgrating
keepsits respectivewavelengthspectruma smoothbell
shape.However,for a largerz, thewidthof thespatial
spectrumis broader(andthewavelengthspectrumnar-
rower.)Thisbroadeningof spatialspectracanalsobeeas-
ily seenwithitsrespectiveMy,rangingfrom7.3to 17.2.
ThelargerMyisthebroaderthespatialspectrum.
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Figure 7. A series of fiber Bragg gratings written at vari-

ous distances, z, and a fixed slit width, b. Shown in (a)
are the spatial spectra and in (b) their respective wave-

lenath spectra.

DISCUSSION

Suppose that the goal, as mentioned previously, is to fabri-

cate Bragg gratings that have spatial lengths as small as

possible and at same time have the well-defined, self-

apodized wavelength spectra. Then from the analysis of the

Fresnel diffraction patterns and the above experimental

results one can set up a kind of criterion such that the goal

can be reached.

Although there is no sharp transition for the characteristic

changes of the spectra resulting from varying My, it is ob-

vious, to obtain satisfactory self-apodized gratings, one can

keep the Nv smaller than 0.25, i.e.,

NF < 0.25. (14)

Since My = 1/2My. The above condition is equivalent to

MF > 2, (15)

or z > bZ/X. This is very close to the "anterma designer's

formula", though slightly less stringent. From the previous

section on apodization, it is stated that in order to produce

self-apodized gratings, the diffraction pattern needs to be

Fraunhofer-like.

Now some formulae developed in the discussion of Fraun-

hofer diffraction can be used here. Since My = AW/b, Eq.

(15) reduces to

Avf >2b. (16)

The physical length (spatial width) of a self-apodized grat-

ing will be broader than the width of aperture that is used

to create the grating.

On the other hand, keeping AW small is also the goal to

keep the sensor size small. Then from Eq. (16), b needs to

be small. However, since AW = 2Xz/b, in order to keep

both the AW and b small, z must be small at the same time

(and still meet the criterion). Therefore, using the smaller

aperture size to make shorter length self-apodized gratings

one needs to bring the aperture closer to the object.

Certainly there is a physical limitation for pushing AW to

be small. First, using the interferometric technique to write

gratings requires a minimum length of the optics behind the

aperture, and thereby a lower limit for z. Secondly, the pe-

riodicity in An for most Bragg gratings discussed here is on

the order of 1 _tm. If a grating only contains a few periods

it becomes too weak to be measurable and usable.

APPLICATIONS

As stated in previous sections, these short length fiber

Bragg gratings with well-defined spectra apparently can be

used as strain sensors just like ordinary length gratings.

Their physical dimension is an advantage compared to the

latter in some applications requiring short length sensors.

In Figure 8, shown is an example of a miniature distributed

strain sensing device, using short length gratings. An opti-

cal fiber inscribed with 16 Bragg gratings was bonded to a

piece of micro mechanical sensor. The fiber runs across

both sides of the H-shape bridge, which is 3 cm long. The

gap distance forming the H-shape is 500 _tm, which allows

the bridge to move in plane. This design is intended to

measure the tangential force. The details and results will be

presented in other studies.

SUMMARY

This study has developed a new technique to fabricate ex-

tremely short length fiber Bragg gratings which are suitable



fordistributedstrainsensing.Thespatialwidthofthegrat-
ingscanbeassmallasafewhundredmicrons.Thistypeof
gratingallowsthesensorsystemtobeminiaturized.A sim-
pleformulahasalsobeendevelopedtogivetheguideline
ofcontrollingrelatedparametersinordertofabricateshort
lengthgratingswithself-apodizedspectra.

Figure 8. A miniature distributed strain sensor. An opti-
cal fiber written with short length Bragg gratings is

bonded to a piece of micro mechanical sensor.

REFERENCES

[1] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J.

Albert, "Bragg gratings fabricated in monomode pho-

tosensitive optical fiber by UV exposure through a

phase mask," Appl. Phys. Lett., 62, 1035 (1993).

[2] G. W. Meltz, W. Morey, and W. H. Glenn, "Formation

of Bragg gratings in optical fibers by a transverse

holographic method," Opt. Lett., 14, 823 (1089).

[3] P.E. Dyer, R.J. Farley, and R. Giedl, "Analysis and

application of a 0/1 order Talbot interferometer for 193

nm laser grating formation," Opt. Comm., 129, 98

(1996)

[4] A. Ghatak and K. Thyagarajan, Introduction to Fiber

Optics, Cambridge University, Cambridge (1998).

[5] J.W. Goodman, Introduction to Fourier Optics, 2 na

ed., McGraw-Hill, New York (1996).

[6] S.J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson,

J. Albert, and A. S. Holmes, "Apodization technique

for fiber grating fabrication with a halftone transmis-

sion amplitude mask," Appl. Opt., 39, 3670 (2000).

[7] W.H. Southwell, "Validity of the Fresnel approxima-

tion in the near field," J. Opt. Soc. Am., Vol, 71, 7

(1981).

[8] G.R. Fowlers, Introduction to Modern Optics, 2 na ed.,

Dover Publications, New York (1975).

[9] M. Froggatt and J. Moore, "Distributed measurement

of static strain in an optical fiber with multiple Bragg

gratings at nominally equal wavelengths." Appl. Opt.,

37, 1741 (1998).


